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AFIT-ENS-13-M-06 

Abstract 

  An important program in the Department of Defense is the KC-46 Supertanker. 

Dubbed the future of the Air Force’s aerial refueling inventory, the KC-46 will replace 

dozens of ailing previous generation tanker aircraft. The Aerial Refueling Airplane 

Simulator Qualification document governs the methods by which Air Mobility Command 

validates its simulators, some of which will be KC-46 simulators in the near future. The 

methodology set forward in this thesis utilizes historical data of aircraft performance 

from similar air frames to gain statistical insight into the performance design space of the 

KC-46.  Leveraging this insight, the methodology provides through a framework for 

validation that uses classical experimental design principles as applied to time history 

responses such as found in aircraft performance measures. These principles guide the 

generation of response surfaces from real world flight test data that can then be used to 

validate flight training simulators using a point by point comparison or over an entire 

surface of points for a variety of different aerial refueling maneuvers. This work also 

supports the KC-46 Tanker program by proposing statistically efficient and cost 

conscious experimental designs for the KC-46 flight testing. This framework is 

demonstrated using flight testing data from the KC-135 Aerial Refueling Simulator 

Upgrade testing, and is part of an Office of the Secretary of Defense initiative to add 

increased statistical rigor to the Department of Defense test and evaluation enterprise and 

specifically the acquisition community. 
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AERIAL REFUELING SIMULATOR VALIDATION USING OPERATIONAL 

EXPERIMENTATION AND RESPONSE SURFACE METHODS WITH TIME 

SERIES RESPONSES 

1.  Introduction 

1.1 KC-46 

 The Boeing KC-46A is poised to become the future of aerial refueling for the 

United States Air Force. Set to replace about half of the Air Force’s aging fleet of KC-

135 Stratotankers, the KC-46A is a next-generation supertanker slated to become the 

primary aerial refueling platform for the United States Air Force. A modified Boeing 

767, the KC-46A also boasts a more substantial cargo payload and a significant increase 

in aeromedical evacuation capability when compared to its predecessor the KC-135. 

According to the official website of the United States Air Force, the KC-46A will be able 

to refuel any fixed wing receiver capable aircraft on any mission (KC-46A Tanker 2011). 

The KC-46 will also provide aerial refueling capabilities for Navy, Marine Corps, and 

coalition aircraft.  

 To assist in its refueling mission, the KC-46 will be equipped with a modernized 

KC-10 boom. This boom is operated using a fly-by-wire control system. This boom 

delivers a fuel offload rate suitable for any large aircraft. The KC-46 is also outfitted with 

a hose and drogue system, allowing it to refuel a larger variety of aircraft. In addition, 

this hose and drogue system adds mission capabilities to the KC-46 that can be employed 

independently of the refueling boom. 
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 The Boeing Company was awarded the contract for the KC-46 in February of 

2011. Currently, the program is in the Engineering and Manufacturing Development 

phase. The initial test flight for the KC-46 is scheduled for late in 2014; Boeing is 

scheduled to deliver the first 18 KC-46 tankers to the warfighter by 2017. While the 

current contract requires Boeing to deliver 179 Combat-Ready KC-46A tankers in all to 

Air Mobility Command (AMC).  

The KC-46A is an important weapon system for the United States Air Force. It 

has been dubbed a “supertanker,” and will be the prominent tool in the future of aerial 

refueling for the Air Force. The program itself is also a major acquisition. The contract 

itself is estimated to be worth upwards of $40 billion. In today’s fiscally constrained 

times, protecting such a program from any sort of financial overrun or engineering risk is 

a top priority for the United States Government. 

 

 

 

 

 

 

 

 

 

 

Figure 1: KC-46 Refuels C-17 (Boeing Image 2012) 
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1.2 Aerial Refueling Airplane Simulator Qualification 

 The Aerial Refueling Airplane Simulator Qualification (ARASQ) document as 

published by AMC provides the acquisition community a means to evaluate the trainers 

and simulators used in aerial refueling (AR) and boom operator (BO) training programs.  

In compliance with Headquarters, Air Mobility Command Aircrew Operations and 

Training Division (HQ AMC/A3T), the ARASQ document is used to determine the 

qualification level of a specific simulator used for AR or BO training based on the 

fidelity and resolution of said simulator.  

 Prior to ARASQ, the evaluation of these simulators was performed utilizing 

mostly subjective criteria. Over time, it became apparent that merely subjective forms of 

evaluation could not be used as a reliable and dependable form of validation, especially 

for simulators designed to reduce flight hours spent on training and increase the quality of 

training spent outside the physical cockpit.  

 To reduce subjectivity, the ARASQ document was developed. Originally released 

in 1997, the ARASQ document was produced with the goal of reducing flying hours 

while helping augment the number of mission-capable AR qualified aircrews. To be 

clear, ARASQ and its five chapters apply strictly to aerial refueling simulator 

qualification. Simulator validation procedures and criteria for other weapons systems are 

contained in other documents also vetted and maintained by AMC.  

 ARASQ provides a list of required test events; each event has been deemed 

critical to the AR process. A test event is a process of interest during the AR process. As 

the event occurs, ARASQ explicitly details specific responses to be measured. In the past, 
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particularly on the KC-135 and KC-10, test data has been collected at certain instances in 

time. ARASQ also limits the design space for the test event according to the following 

four factors, also known as controls: tanker weight, receiver weight, airspeed, and 

altitude. ARASQ prescribes limits on the range of values each of these controls can take 

on as required by the individual test events. Routinely throughout the ARASQ document, 

factor levels are prescribed at one of three levels for the test event.  

 The ARASQ document also deals with different levels of certification. For 

example, for a simulator to be used for aircrew continuation training credit only actual 

flight test data may be used. ARASQ provides a checklist of test categories for Level C 

and Level D certification. Level C certified simulators are to provide an accurate 

representation of the cockpit. Level D certified simulators are required to provide a more 

realistic representation of the actual system in terms of audio, visual, and motion cues on 

top of the requirements already laid out for a Level C simulator. Simulators for the KC-

46 require a Level D Certification. 

 There are several limitations on ARASQ and the simulator training models. First, 

data from flight testing has traditionally only been used to validate simulator events 

related to a specific flight testing event. This limits the fidelity of a simulator training 

model. Next, historically only a portion of the flight test data has been used in simulator 

validation. This same validation has also been performed on a case by case basis; for 

example, a single point in the design space is considered validated if the simulator’s 

results fall within a certain tolerance at that point in the design space. This can give rise 

to a myriad of issues, not the smallest being the simulator’s failure to capture the true 

nature of the physical system across all points in the design space.  
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A third limitation of the way the simulator training models have been built in the past is 

that the model building process is not reproducible. This drives a wedge in between 

development and implementation of a simulator as a form of training for a real world 

operator. 

 There are also limitations on the flight testing for the KC-46. Most importantly, 

the flight test program has prescribed that only 50 hours of flight testing will occur for 

each aircraft pair in the Air Force’s inventory. This is a reduction in flight testing by 50% 

compared to the testing that was done for the KC-10 during its acquisition process. 

Subject matter experts (SMEs) have determined that this is hardly enough time to capture 

all of the ARASQ test events, let alone capture the additional data for simulator 

validation. 

1.3 Research Objectives 

 The research objectives stem directly from the needs of the KC-46 program office 

(PO) and the Simulators Division. The goal of this research is to provide a three-pronged 

approach to simulator validation leveraging work done in the past for the PO and the 

Simulators Division. Keeping this in mind, the following three research objectives were 

developed along the way: 

1. Evaluate current ARASQ test events employing data of like systems and 

propose defendable alternate designs based on efficiency, nature of the design 

space, cost, and subject matter expert opinion. 

2. Building upon the methodology as set out by Capt Scott Storm, use flight test 

data to generate time series response surfaces to characterize the entire design 

space while optimizing a set of proposed ARASQ designs. 
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3. Build a framework for simulator validation using response surface 

methodology to augment current Simulator Certification (SIMCERT) 

protocol. 

1.4 Thesis Overview 

 This document is organized according in a six chapter format. This first chapter 

introduces the topic of interest, the pertinent background information, and the research 

objectives. Chapter two details an in-depth review of the pertinent literature from the 

current body of knowledge. Chapter three streamlines the methodology for creating 

optimal test event designs to create predictive response surfaces with time history data 

and lay out a framework for simulator validation using response functions and surfaces. 

Chapter four illustrates the practicality of the proposed design optimization methodology 

performing a step-by-step analysis of past data.  Next, chapter five focuses on the 

simulation validation methods through a case study. Finally, chapter six provides analysis 

conclusions, the contributions of this thesis, as well as the recommendations for future 

research.  
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2. Background 

 This chapter provides the reader an overview of foundational concepts which are 

relevant to this analysis through a thorough review of the body of knowledge. This 

chapter is divided into two sections. The first section provides a review of classical 

experimental design principles, response surface methods as they apply to this analysis, 

and the issue of time series responses in operational experimentation. It also briefly 

details the current push for statistical rigor in light of the initiatives from the Office of the 

Secretary of Defense (OSD). The second section discusses key modeling and simulation 

concepts applicable to this research. This includes but conceptual modeling, validation, 

validation techniques, terminology and related principles and techniques.   

2.1 Classical Experimental Design 

 Experimental design (DOE) involves the use of planned experiments in which a 

“test or series of runs in which purposeful changes are made to the input variables of a 

process or system so that we may observe and identify the reasons for changes that may 

be observed in the output response (Montgomery 2009).” A traditional experimental 

design examines a set of factors and how changes in these factors affect the outcome or 

response for that specific process.  

 Designed experiments use a pre-specified plan, and often displayed as a matrix. 

“The factors of an experimental design are the columns or variables that have two or 

more fixed values or levels. The rows of a design are the treatment combinations and are 

sometimes called runs (Kuhfeld 2010).” Typically, analysts run experiments to make 

statistical insights into the effects of factor levels on outcomes or response variables. 
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 Experimental design is widely used in industrial settings as well as in business. 

Originally, the groundwork for Designed Experiments was set out by Sir Ronald Fisher 

(Fisher, Statistical Methods for Research Workers 1958). A statistician at an agricultural 

firm, Fisher realized that the way some experiments were performed often biased the data 

in some fashion. After laying the ground work for Analysis of Variance (ANOVA), 

Fisher introduced three cornerstone principles of experimental design: randomization, 

replication, and blocking. Randomization is the idea of performing experiments in a truly 

random order as to minimize the systemic variation of nuisance variables that are 

unknown to the experimenter but still vary during the experiment uncontrollably. 

Replication involves repeating some treatment combinations during the experiment to 

glean an accurate estimate of experimental error. Blocking is a technique used to control 

for nuisance factors that are known but uncontrollable. It allows the experimenter to limit 

their effect on the experimental error estimate. Fisher’s work paved the road for 

experimental design as we know it today (Fisher, The Design of Experiments 1966). 

 In evaluating a designed experiment, analysts use statistical criteria. Today, these 

criteria have come to be known colloquially as alphabetic optimality. First discovered by 

Smith in 1918 (Smith 1918),  optimal designs allow a design to minimize prediction 

variance and limit bias amongst the estimators, thus yielding more applicable and useable 

results for the experimenter. Smith’s paper, however, was 30 years before its time. It 

wasn’t until the late 1950s when Kiefer and Wolfowitz (1959) and Kiefer (1961) 

proposed the idea of selecting designs based on a specific criterion. Their work initially 

hypothesized that designs should be selected to estimate model parameters with the most 

accuarcy (Kiefer and Wolfowitz, Optimum Designs in Regression Problems 1959). 
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Kiefer delved deeper into the development of a computer algorithm for building a D-

optimal design (Kiefer, Optimum Designs in Regression Problems II 1961). 

 There are several alphabetic optimality criteria. For brevity’s sake, only two are 

addressed in this analysis. The first criterion is D-optimality and the second criterion is I-

optimality. In his text devoted entirely to DOE, Montgomery describes D-optimal designs 

as “a design that minmizes te variance of the model regresion coeeficients.” I-optimal 

designs seek to minimize the average variance of prediction (Montgomery 2009).  

 Kiefer and Wolfowitz’s work did not catch on at first because of the limitations in 

the computational power of their era. However, today, most statistical software packages 

include a design optimization application. These applications can use a variety of 

algorithms for design optimization. These algorithms can be altered for various types of 

problems. In the past, genetic algorithms (Todoroki and Ishikawa 2004), stochastic 

genetic algorithms (Jin, Chen and Sudjianto 2005), and even local search evolutionary 

algorithms (Dengiz, Altiparmak and Smith 1997). Today, computing power is not as 

much of an issue as in the 1950s, and the SAS Institute’s JMP (JMP 10.0 n.d.) handles 

design optimization quite well. 

 Typically, a design is initially built to estimate the model’s parameters as 

efficiently as possible. Designs built using this approach have been dubbed a “locally 

optimal” designs (Chernoff n.d.). These designs typically do not leverage knowledge of 

the prior distribution of the model’s parameters. Such a design is a Bayesian 

Experimental Design (Raiffa and Schlaifer 1961). In fact, most of the alphabetical 

optimality criteria have a “utility-based Bayesian version (Chaloner and Verdinelli 

1995).” In some experiments, the analysis is more geared towards prediction than 



10 

statistical inference or screening. For this type of problem, a predictive Bayesian 

approach can be used for both the analysis and the experimental design (Geisser 1993). 

This approach theoretically most closely relates to the approach used in the analysis 

section of this document.  

2.2 Response Surface Methods 

 Building upon Fisher’s seminal works, G. E. P. Box and K. B. Wilson developed 

a new tool for analyzing the potential relationships between explanatory control variables 

and one or more response variables (Box and Wilson, On the experimental attainment of 

optimum conditions 1951). A response surface is a “graphical perspective of the problem 

environment (Myers, Montgomery and Anderson-Cook 2009).” Box and Wilson 

developed several techniques to exploit the immediacy and sequentiality of industrial 

experiments; these two properties mean that experimental results can be recorded 

(almost) immediately during an industrial process and experiments can be run to gain 

informational results in a small number of treatment combinations. For this reason, DOE 

works well for screening experiments, or experiments in which the main goal is to 

determine the significance of effects.  

 The techniques discovered by Box and Wilson allow the experimenter to estimate 

the relationship between a response y and a set of controls X for a product, process, or 

system in form of equation (1).  

          (1) 

where ε is a term representing the other sources of variability in the underlying process 

not captured in the function f (Myers, Montgomery and Anderson-Cook 2009). This 

function can be easily estimated using ordinary least squares. 
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 In the popular RSM text by Myers, Montgomery and Anderson-Cook (2009), 

three objectives and applications of RSM are outlined: 

1. Mapping a response surface over a particular region of interest. 

2. Optimization of a particular response. 

3. Selection of operating characteristics to achieve specific results. 

“RSM is an important branch of experimental design… RSM is a critical technology in 

developing new processes, optimizing their performance, and improving the design 

and/or formulation of new products (Myers, Montgomery and Anderson-Cook 2009).” 

 Response surface designs usually involve two to eight continuous control 

variables with at least one response. Usually, a priori, we can assume that the model for a 

response surface experiment is quadratic (JMP Support 2013) at least in a sufficiently 

small experimental region of interest. For this reason, a second-order model is used in 

most response surface models.  

 A second-order model is used to detect curvature for a response surface 

(Montgomery 2009). In practice, using a second-order model to estimate the function f 

discussed in equation (1) is useful out of “practical experience (Myers, Montgomery and 

Anderson-Cook 2009).” Box and Draper go into considerable detail in their text about the 

flexibility of the second-order model and its ability to work well in solving a response 

surface problem from reality (Box and Draper, Empirical Model Building and Response 

Surfaces 1987). The ARASQ designs being analyzed for the KC-46 directorate will 

require second-order models to detect curvature within the design space. 

 Traditional response surface experiments use only continuous, quantitative 

factors. Response surfaces are used mainly for evaluating prediction, as opposed to 
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evaluating the efficiency of the parameter estimates. In the past, the most popular form of 

response surface design used the D-optimality criterion, which intuitively does not make 

sense. “Because I-optimal designs minimize the average variance of prediction over the 

region of experimentation, their focus is clearly on prediction. Therefore, the I-optimality 

criterion seems to be a more appropriate one than the D-optimality criterion for 

generating response surface designs (Jones and Goos 2012). “ 

2.3 Time Series Response Data 

 In classical experimental design, responses are usually recorded as a snapshot in 

time, not a continuous history of data. As noted by Box and Wilson, industrial 

experiments usually involved recording the outcome of a test run as a single value 

immediately following the experimental run (Box and Wilson, On the experimental 

attainment of optimum conditions 1951).  

Scott Storm seems to be one of the first to apply the principles of DOE to time 

series experimentation. Unlike in classical DOE and RSM literature, the responses in this 

analysis and in Storm’s data were in the form of a function of time. This presents a 

“unique dilemma (Storm 2012).” Storm formulated a methodology for analyzing these 

time series response surfaces using discretized samples from various time steps, each 

corresponding to an instance in time and its own discrete matrix of inputs Xt. This 

allowed Storm to represent each time step as one design matrix of controls and responses.  

Using historical data, Storm used these design matrices for one particular ARASQ 

test event to analyze the curvature of the response surface generated using pitch attitude 

as the response of interest. Upon visual inspection of these surfaces, if curvature existed, 

a three-level design for ARASQ was justified.  
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2.4 Comparison of Response Surfaces 

 A huge part of the design and testing of A/C systems occurs in wind tunnels. 

These test campaigns use a large number of test runs and usually take a long time to 

accomplish – sometimes years! Hill et al (2010) used a large legacy wind tunnel testing 

data set to develop a methodology for comparing two response surfaces: one from the 

legacy data set, and another from a smaller sample training set for validation.  

Using Monte Carlo simulation to sample points from the legacy set, two response 

surfaces were compared using both the coefficients of their respective response surfaces 

and their regression equations. Using a confidence interval about the mean of the 

differences between each point, Hill et al showed that the differences between the 

surfaces are independent and iid. Assuming a mean of 0 for the differences, they 

concluded that the surfaces were roughly identical in a statistical sense (Hill, et al. 2010). 

RSM models are today used occasionally for simulator validation, particularly for 

multi-agent social network simulations (Carley, Kamneva and Reminga 2004). However, 

supplementing the validation techniques currently used in social network simulations 

with the work of Hill et al, simulation validation and calibration can be accomplished in a 

non-agent based, non-social network simulation.  

2.5 Statistical Rigor in the Department of Defense 

 The Department of Defense (DoD) Test Enterprise is responsible for test and 

evaluation policy as well as the planning, execution, and analysis of tests. While using 

the tenets of experimental design alone does not guarantee scientific adequacy or 

accuracy, better testing of systems results in a better allocation of resources and helps 
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categorize and quantify risk and uncertainty (Gilmore, Guidance on the use of Design of 

Experiments (DOE) in Operational Test and Evaluation 2010).  

 While experimental design and statistical rigor are not new in the DoD (Johnson, 

et al. 2012), experimental design does have many practical applications within the DoD. 

In particular, DOE has a place within T&E for research and development (R&D), 

something vital to the design, development, and deployment of military systems in 

today’s unconventional combat environment. In 2009, Hutto and Higdon concluded that 

“DOE can be used to great profit” in testing military systems. DOE often results in 

efficient and effective test programs, “even in the face of difficult and noisy test problems 

(Hutto and Higdon 2009).” DOE’s usage throughout the DoD has become widespread, 

and it’s no secret why. 

 Dr. Michael Gilmore, the director of Operational Test and Evaluation, began four 

test and evaluation (T&E) initiatives after taking office in 2009; one of these initiatives 

was the Science of Test initiative as noted in his 2013 report to Congress (2013). Its goal 

is simple: to support the integration of advanced statistical rigor and mathematical 

foundations into the test domain (Gilmore, Test and Evaluation (T&E) Initiatives 2009).  

 DOE and an efficient utilization of DOE can lead to a series of improvements 

within the DoD acquisition community and ultimately help the warfighter. DOE enables 

experimenters to use early results to refine future test events (Gilmore, Rigor and 

Objectivity in T&E: An Update 2011). Known in the academic world as a screening 

experiment, this idea has not always been implemented in the T&E world to its fullest 

extent.  
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2.6 Conceptual Modeling  

In its simplest form, a simulation is a conceptual model of a real system. A 

conceptual model is the “abstraction of a model from a real or proposed system 

(Robinson, Conceptual Modeling for Simulation: Issues and Research Requirements 

2006).” Conceptual modeling, like simulation, involves a simplification of reality. The 

simplification process requires input from real-world users and operators, and usually a 

laundry list of model assumptions developed by the analyst as well.  

A model can refer to almost anything in math, statistics, or computer science. It 

can be any “physical, mathematical, or logical representation of a system, entity, 

phenomenon, or process (Zeigler, Praehofer and Kim 2000).” A model can be applied to 

anything, and does not refer to strictly simulation models, although today many people 

ultimately associate “modeling” with modeling and simulation (M&S).  

A simulation is a model of an actual system, and simulation models are 

commonly referred to as executable forms of underlying conceptual models. Usually, 

simulators build models of systems to make changes to the underlying physical system 

and examine the results. Typically an experimenter will simulate a model where changes 

to the actual system are either impossible, too expensive, or impractical (Maria 1997). 

Using a simulation model allows the researcher to simplify the physical system and make 

insights into the properties of the system.  

2.7 Conceptual Model Validation 

The importance of simulation validation is well documented and is a common 

theme in the M&S literature (Robinson, Simulation: the Practice of Model Development 

and Use 2004). Validation ensures that the simulation model accurately portrays the 
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underlying system. There is widespread agreement that model validation is important; the 

disconnect lies in the methods by which different types of simulations are validated.  

Usually, a model is validated by checking its performance under known 

conditions and comparing this performance to the actual system, if possible (Maria 1997). 

An analyst can perform statistical inference tests to judge the validity of the model. 

Another form of validation is to test the model’s underlying statistical assumptions and 

then use face validation techniques (Sargent 2004).  

Extensive validation not only ensures that a model is correct, but it also inspires 

confidence in the model’s results. DoD models are not immune from model validation. 

DoD Instruction 5000.61 details the terminology and principles used in DoD modeling 

and simulation (Department of Defense 2009).  The DoD definition echoes the principles 

discussed in this section.  

2.8 Levels of Validation 

 Not all simulation models are created equally. Different models require different 

levels of verification and validation (V&V). These different levels of V&V stem from the 

following facets of a simulation: objectivity, repeatability, timeliness, completeness, and 

accuracy (Harmon and Youngblood 2005). According to Harmon and Youngblood, there 

are six levels of simulation validity, each with its own level, of the five facets mentioned 

above.  
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Table 1 Levels of Validity 

 

In an ideal world, all simulations would be in the fifth tier of validity; 

unfortunately, this is not always the case.  

Harmon and Youngblood point out two vital assumptions for this tiered validity 

assessment model: 

1) The quality of validation information depends upon its truthfulness 

and completeness, and improved truthfulness and completeness can 

only be achieved through improved objectivity; and 

2) Reliably improving validation process objectivity requires 

understanding the fundamentals of that process. 

These assumptions are fundamental in nature yet commonly disregarded in the modeling 

community. 

2.9 Types of Validation 

 There are many uses of simulation and several different ways to validate each of 

them.  On the surface, there are two types of validation: face validation and empirical 

validation (Klugl 2008).  

Tier of Validity Type of Validity

0 I have no idea.

1 It works; trust me.

2

It represents the right entities and

attributes.

3

It does the right things; its

representations are complete

enough.

4

For what it does, its

representations are accurate

enough.

5

I’m this confident that this

simulation is valid.

Required entities, attributes, dependencies, and dependency errors

compared against entities, attributes, and dependencies represented and

representation errors
Required entities, attributes, dependencies, dependency errors, and

confidences in assessment compared against represented entities,

attributes, dependencies, representation errors, and assessment

confidences

Supporting Information

Nothing

Simple Statement of Validity

Required entities and attributes compared against the entities and

attributes that the simulation represents

Required entities, attributes, and dependencies compared against entities,

attributes, and dependencies represented
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 “Face validity shows that processes and outcomes are reasonable and plausible 

within the frame of theoretic basis and implicit knowledge of system experts or stake-

holder (Klugl 2008).” Face validity is more of a continuous loop than empirical 

validation. It should be started immediately once the conceptual metamodeling process 

has begun. It involves checking the general plausibility of the model as it relates to the 

underlying real-world system. 

 “Empirical validation uses statistical measures and tests to compare key figures 

produced by the model with numbers gathered from the reference system (Klugl 2008).” 

This involves either relating the statistical metrics from the simulation model to the real-

world system, or comparing the statistical parameters from the simulation to another 

simulation model that has previously been validated and verified.  

2.10 Validation Techniques 

 Different “brands” of simulations can be validated in different ways. There are 

several validation techniques available to the conceptual modeler.  

 Sargent provides a brief yet descriptive overview of the available techniques in 

his seminal work Verification and Validation of Simulation Models (Sargent 2004). 

 Animation: this technique presents the simulation visually as it steps through time.  

Comparison to other models: this technique involves either a graphical or 

empirical comparison to another widely-accepted model. 

Degenerate Tests: this involves comparing the values of parameters as they relate 

to specific parameters within a model; for example, should the average number in 

the queue actually increase when the arrival rate is indeed larger than the service 

rate? 
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Event Validity: does the number of critical events within a model match the real-

world? 

Extreme Condition Tests: this method compares the model to the real-world at the 

extreme points of operation for the underlying system. 

Face validity: this technique requires SME opinion and compares the views of the 

SMEs to the outputs of the model. 

Historical Data Validation: if historical data exists, some of it can be withheld in 

the building of the model then used for empirical comparison once the model is 

running. 

Historical Methods: this category involves three techniques – rationalism, 

empiricism, and positive economics. Rationalism deduces logical conclusions to 

judge validity of the model from the model’s underlying assumptions. Empiricism 

requires that all underlying assumptions be not only rationally justified but 

empirically proven. Positive economics requires that the model is able to predict 

its outputs correctly.  

Internal Validity: this involves replications of the model to determine the internal 

variability of the model.  

Multistage Validation: this technique rolls all three historical methods into a 

multistage process.  

Operational Graphics: operational parameters and their levels are shown 

graphically as the model progresses in time. This can easily be prepared by time 

slice to the real-world system. 



20 

Parameter Variability: this sensitivity analysis checks the variance of the outputs 

based on the model’s inputs. 

Turing Tests: This method requires SMEs to discriminate between model and 

real-world outputs. 

2.11 Types of Simulation 

 While many types of simulation exist, certain validation techniques are not always 

appropriate for different simulation brands. Some popular types of simulation are live, 

virtual, or constructed, or some combination of these three categories. The DoD 

traditionally uses a simulations with varying resolution from any of these three 

categories.  

 For example, manufacturing simulation models typically involve discrete-event 

modeling techniques. This is often referred to as a “job-oriented” world view (Fowler and 

Rose 2004). This type of simulation is typically stochastic in nature, and validation of the 

internal variability will be a particularly important feature of the validation. 

 Another type of simulation is deterministic simulation. In a deterministic 

simulation, the model produces results without variance. This helps limit the complexity 

of the simulation as well as the computational intensity of the model. However, 

occasionally deterministic simulations require extensive computing power. The popular 

RSM technique “Kriging” is used to “detrend” the data using linear regression (Beers and 

Kleijnen 2002). This is an example of extensive empirical validation using degenerate 

testing.  

 Another type of simulation is agent-based simulation. Often these simulations 

contain feedback loops between particular entities, or agents, and their environment. This 
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makes validation difficult because of the non-linear effects on parameter estimates within 

these models (Klugl 2008). Another difficulty of validating agent-based simulations is 

their reliance upon historical data. If this data is not readily available, validation, the most 

central feature of a “good” simulation, is nearly impossible. As they tend to study the 

hierarchy of interactions within a modeling environment, agent-based simulations require 

historical data validation testing the model’s underlying statistical assumptions as well as 

the model’s outputs. In his survey paper, Heath et al provides a detailed discussion of the 

validation of agent-based models from 1998-2008 (2009). 

 Another type of simulation is the Man-in-the-Loop style of simulation. These 

simulations are typically virtual and constructed, like a flight simulator trainer (Knepell 

and Arangno 1993). These simulators require validation with SME opinion as well as 

empirical validation. Another commonly used technique with these models is the 

validation using DOE (Schatzoff 1975). Using replicated designs in both the real-world 

system and the simulator, the modelers can produce statistically comparable results for 

the same parameters. Coincidentally, both AR and BO training simulators fall into this 

category of simulations.  
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3. Methodology 

 A unique feature of the ARASQ test events is the predicament of response 

variables as a function of time (Storm 2012). The ARASQ document requires a specified 

time interval of flight testing data for each maneuver being tested. As previously noted by 

Storm, traditional response surface methodology (RSM) literature has not yet truly 

addressed how to deal with time series response variables. The training simulators being 

validated with ARASQ testing data are dynamic systems that obviously must change over 

time to portray a cohesive representation of their underlying physical systems. For this 

reason, using time history test events appears to be a logical and inherent approach to 

modeling this type of dynamic system as well as validating such a model. This chapter 

lays out a streamlined approach for optimizing a design and generating response surfaces 

for simulator validation. This chapter is presented in two parts. The first section details 

how to leverage past data for design optimization and provide a criterion for design 

optimization. The second section steps through the methods for simulator validation 

using response surfaces generated with data from the optimized design. 

3.1 Bayesian Design Optimization 

 The first section of this chapter walks through how to optimize the designed 

experiment for an ARASQ test event. This is done in two steps: 

1. Leverage historical data from similar air frames to analyze via analogy the 

experimental design space for the KC-46. 
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2. Using statistical insights into the operating envelope of the KC-46, optimize 

the designed experiment for a particular test event according to the optimality 

criterion of interest. 

3.1.1 Leveraging Historical Data to Glean Insights about the Design Space of a 

Similar Air Frame. While not identical, the KC-135 and KC-10 come from the same 

class of aircraft (A/C) as the KC-46. this class of A/C is used for aerial refueling, and 

their primary mission is to provide American and coalition air forces aerial refueling 

capability. According to subject matter experts, the flight control surfaces of these A/C 

will exhibit similar performance when doing similar maneuvers. With this logic, a 

comparison by analogy can be drawn between the previous generation and the future 

generation of AR A/C. 

Given a particular test event of interest for the KC-46, there exists a similar test 

event performed in the past using either the KC-10 and/or the KC-135. These test events 

are organized as designed experiments, similar to the designed experiments planned for 

the KC-46 based on ARASQ revision C. These past test events involve time series 

response data using controlled factors for experimentation. These test events utilize a data 

structure that allows us to examine each time slice as its own discrete design matrix. 

Using control variable response data, we build a design to estimate the following 

relationship 

 ( )t

tY f X  (1) 

 

where Y
t
 is a n x l matrix of response. The index l corresponds to the response while n 

corresponds to test run or observation number. The superscript t attached to Y indicates 
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the time slice. The function f implies some transformation of the design matrix Xt. This 

transformation is just an exploitation of the relationship between Y and X. Xt is organized 

in the following fashion: 

1,1, 1,2, 1, ,

2,1, 2,2, 2, ,

,1, ,2, , ,

t t p t

t t p t

t

n t n t n p t

x x x

x x x
X

x x x

 . 

The index p corresponds to the independent variables in that column of the X matrix. 

 According to subject matter experts, the biggest source of engineering risk in the 

implementation of an Air Force-wide flight training simulator lies in the ability to capture 

the nuances of the design space. In statistical terms, this means the ability of a test to 

detect curvature of a response surface within the design space is of huge importance.  

 To detect this curvature based on historical data we generate  response surfaces 

with the data. For each of the responses of interest, at each time slice     , where l 

represents the response variable and t represents the time slice for which the equation is 

generated, a second-order response function can be estimated using ordinary least squares 

(OLS). Using OLS, the X matrix takes the form: 

1,1, 1,2, 1, ,

2,1, 2,2, 2, ,

,1, ,2, , ,

1

1

1

t t p t

t t p t

t

n t n t n p t

x x x

x x x
X

x x x

 . 

The response function estimated is presumed to be nonlinear and estimated using 

equation (2). 
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(2) 

 

In previous ARASQ experiments, the controls were Tanker Weight, Receiver 

Weight, Airspeed, and Altitude. The Xj terms that correspond to the final third of the right 

side of equation (2) are the terms used to estimate the quadratic effects. They are 

calculated using this simple equation: 

 2

,( )j t jx   (3) 

Here the index j corresponds to the control of interest, while 
j  is the mean for that 

control across the entire maneuver. This operation controls for multicollinearity between 

each xj,t and x
2

j,t columns within Xt which can inflate experimental error estimates and 

cause incorrect estimation of model effects. All historical designs employed a three-level 

design, making estimation of quadratic effects possible. 

 Using Microsoft Visual Basic for Applications (Visual Basic for Applications 

2007), the time series control and response data were imported into Microsoft Excel for 

pre-processing (from original .ASCII file format). Visual Basic provides an automated 

and reproducible avenue for extracting Tanker Weight, Receiver Weight, Airspeed, and 

Altitude as well as the values for twelve other responses from these files. 

After grooming the data and preprocessing it, Microsoft VBA was used to loop 

across the time slices, sending each matrix of controls and responses to MATLAB for 

regression analysis (MATLAB 2012). Using MATLAB’s regstats command, the 

regression coefficients for the second order nonlinear model were estimated along with 

their p-values. 
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At this point in the analysis, the p-values of the quadratic effects are analyzed 

with lenient scrutiny to determine the statistical significance of their coefficient estimates. 

For each quadratic effect for each response at each time slice, we perform the following 

hypothesis test:  

 H0: The quadratic effect is equal to 0 

 HA: The quadratic effect is not equal to 0 

A p-value lower than a pre-specified significance level  allows us to reject the null 

hypothesis and conclude that there potentially is curvature from that quadratic effect for 

that time slice.  

 MATLAB provides the ability to generate these response surfaces graphically. A 

special MATLAB tool
1
 was built for the analysis of these response surfaces. Pictorially, 

any sort of hill or valley in the graph of the response function is evidence of curvature in 

the design space for that time slice that can be used to help reinforce evidence shown by 

the model’s p-value for that time slice. The MATLAB tool automates the plotting of 

response surfaces to visually detect curvature. 

 The bottom line is that if response surface within the design space for any time t 

exhibits any evidence of curvature, a three-level design is reasonable. If not, a two-level 

design can be employed in a new proposed ARASQ test event with a corresponding 

reduction in the size of the ARASQ test design. 

 3.1.2 Optimize the ARASQ Test Event of Interest Using a Specific Optimality 

Criterion This resulting design from this section is termed “Bayesian” Optimal 

because it leverages prior knowledge based on historical data from a similar ARASQ test 

                                                 
1
 This tool was developed by the  Center for Operations Analysis at AFIT. 
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event on a similar airframe to gain insights into the design space for a developmental 

airframe. For KC-46 ARASQ, we can use the response surface analyses on previously 

collected test data to infer information about the KC-46 and its response surfaces. Using 

this information, a primary goal is to build response surfaces to validate the network of 

training simulators ultimately used by KC-46 air crews. 

If an analysis relies upon response surfaces for the bulk of the statistical 

inferences, a Box-Behnken design or a Central Composite Design is preferred because of 

their ability to accurately estimate the quadratic effects within a specified design space. 

However, these designs are “expensive” – they require more test runs than often possible 

in today’s fiscally constrained acquisition environment. The current ARASQ designs are 

fractionated three-level designs but have poor variance properties in general; the fractions 

employed do not appear to have been developed using statistical rigor or analytical 

objectivity. For this reason, computer generated optimal designs are used in this 

investigation to improve the variance-based efficiency of the ARASQ designs. 

 A computer generated optimal design uses an algorithm to search among and 

compare the different mixes of test points from a pool of candidate test points to find 

some best design matrix within the design space with respect to a particular optimality 

criterion. The optimality criterion of interest in this analysis is Integrated Optimality (I-

optimality). Another popular design criterion is Determinant Optimal (D-optimal). 

 An I-optimal design attempts to minimize the average prediction variance over 

the design space; to compare to another common optimality criterion, D-optimal designs 

try to maximize the determinant of the information matrix. While a D-optimal design is 

handy in screening parameter estimates, an I-optimal design minimizes the variance of 
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prediction for the response function discussed in equation (2). This allows the analyst to 

more accurately fit the response surface to the actual data, which at the same time helps 

decrease the size of the prediction interval associated with a new observation.  

 A design is I-optimal when  

 1( ) [( ' ) ]Max I Trace X X M  (4) 

where M is defined as 

 ( ) ( ) 'm

R

mM x x dx   (5) 

and ( ) 'mx  is the row of interest from the design matrix. The trace of a matrix is simply the 

sum of that matrix’s diagonal elements. The objective value for an I-optimal design 

comes from the prediction variance of a particular design. As these I-optimal designs 

minimize the average scaled prediction variance across the design space, they tend to 

develop better predictors in the center of the design space. Unfortunately, this can 

increase the prediction variance at the extreme points of a feasible space.  

 In this analysis, an I-optimal design is preferred to an I-optimal design because an 

I-optimal design typically places fewer test runs near the extreme points of the feasible 

region for the particular design and the design focuses on the variance of the surface 

estimates. I-optimal designs provide the best characterization of a response surface, 

especially one that is used for prediction.  

 In this investigation, SME directed ARASQ test events are evaluated statistically 

using JMP in terms of D-efficiency and average scaled variance of prediction. D-

efficiency is given by the following equation: 
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with p as the number of parameters being estimated and ND as the number of test runs in 

the designed experiment. The scaled prediction variance for any location in the design 

space xo is given by the following equation:  

 10
0 0 02

var( ( ))
( ) '( ' )

N f x
v x Nx X X x



   (7) 

with N as the total sample size and 0( )f x  is the predicted response at the point xo in the 

design space. The value of this variance operator is averaged across the design space. 

 Using JMP 10.0 and the functionality of the DOE tab (JMP 10.0), JMP can be 

utilized to generate an I-optimal design. Using the custom design in JMP to build a 

design with the desired number of factors with a pre-specified number of levels (as 

investigated in the first step of this methodology chapter), we  can build a “better design” 

with the same number or fewer runs as specified in the ARASQ document. The word 

better is in quotes because this is a relative term: JMP will definitely build a design that 

minimizes the average variance of prediction across the entire design space, but this is 

usually a tradeoff between D-efficiency and prediction variance.  

3.2 A Framework for Simulator Validation 

 Using the data from an ARASQ test event as performed on the KC-46, using the 

same style of analysis as in the preliminary step of this methodology, response functions 

can be estimated according to the following response function: 

 

                                       

   

   

 

     

           
 

 

   

 

   

 
(8) 



30 

This response function is generated using OLS with one subtle exception. This response 

function contains first order interaction effects. This is better for a response surface used 

for simulator validation; it characterizes not only curvature in the feasible region but also 

rotation and twisting in that same space. However, this is an ideal case. Typically, 

equations following the form of equation (8) require more runs than estimate parameters. 

A small sample size design will not have enough degrees of freedom (runs) to estimate 

these effects in an unbiased fashion. 

 The analyst must determine the exact model form to fit to the ARASQ data. This 

determination considers each of the required model terms and the available ARASQ 

response data for a test event. 

 The ARASQ design, or some alternatively proposed design, can be used to collect 

responses from the simulator. This data are then used to fit models according to equation 

(8) for the simulator data using the same methods  used to build the response surface 

models built from ARASQ flight test data. 

 Validation now proceeds by comparing the ARASQ and simulator response 

functions (and their corresponding surfaces) for general agreement. We can assess 

response function agreement using two different methods. 

3.2.1 Validation Using Point by Point Comparisons  The first validation method is 

a comparison of  a test point couple sampled anywhere in the design space. This point 

couple is produced using its control levels first simulator. Next, the flight test response 

value is produced using the response function built from the ARASQ test event 

corresponding to the control levels in the simulator. Because the value of the response for 

flight testing comes from the previously generated response function, no additional flight 
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test time is needed.  This method is robust enough to compare any point from the 

simulator run in the operating envelope of the KC-46 to the “Ground Truth” of the 

ARASQ flight test event. This technique can be used for a single point-by-point 

comparison for proof-of-fit.  

 Using a (1-α)% prediction interval, we can account for the variability of the 

distribution            . This conditional distribution is built around            ), 

but it also considers the uncertainty in the fitted values of Y.  Given a sample point run 

within the simulator, this prediction interval can be used to validate individual samples or 

sample data not sufficient to generate a comparable response surface for validation. 

  Using the fitted values of the response function          , we can build this 

prediction interval around any fitted value. The (1-α)% prediction interval is built 

according to the following equation: 

 
          

 

 
    

          
    

          (9) 

where     is the column vector of inputs corresponding to the sample point and       is the 

fitted response being analyzed at time t matching the time slice of the input values. This 

prediction interval is calculated using critical value from the student’s t-distribution with 

probability α/2 and n-p degrees of freedom where n  is the number of test runs in the 

“ground truth” response surface and p is the number of parameters estimated in that 

response function.  

 Using this prediction interval as our guide, if a response value as modeled in the 

simulator fits within this (1-α)% prediction interval, we can conclude that the simulator 

captures the actual response.  
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3.2.1 Validation Using Surface Comparisons The second form of validation 

proposes the use of a mesh grid as discussed by Hill et al (2010). This method calls for 

the comparison of the response surface from ARASQ flight testing for the KC-46, 

denoted as the ground truth, or GT, and the surface generated in the simulator from the 

optimized designs for minimized prediction variance (I-optimal). Let this surface be 

called the optimized surface or O.  

 The difference between responses can be denoted as           
        

     
 for 

m=1,2,…,M. This M is the total number of points that are being compared for validation. 

As the pairs of responses are iid, the        are also iid with  
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The unbiased estimator of the mean of the differences is       as its expected value is equal 

to  
 

 and the unbiased estimator of the variance is 
 

 
       

        
           

       
 . As 

discussed by Hill et al,    
     

 and   
     

are roughly normally distributed for any given m, 

the difference        also must be normally distributed. Thus, the test statistic follows the 

student’s t-distribution with M-1 degrees of freedom as shown in equation (12). 

 
  

       
     

 
        

        
           

       
 

 
(12) 
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Using this test statistic, the null hypothesis would imply that the average difference 

between responses for a given response at a given time is equal to 0, or  
     

  . A 

rejection of this null hypothesis signifies that the surfaces are statistically identical at 

some strict alpha level, resulting in a validated set of data from the training simulator. 

Confidence intervals can be built around      , and it is true in practice that if the 

confidence intervals contain 0 or a value sufficiently close to 0 that the simulator data is 

statistically identical to the ground truth data from ARASQ flight testing. 
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4. Bayesian Design Optimization 

 This chapter illustrates the design optimization methods detailed in chapter three. 

The sample data used for this analysis comes from Table 5-3 1.a.2 from Flight Testing, 

using just the KC-135 in flight for the test. The title of the test is Boom Operator Control 

Characteristics in Free Air. It corresponds to section 2.2.5.3 (Boom Operator Control: 

Elevation – Free Air) of ARASQ revision C. 

4.1 Leveraging Past Data  

 The test matrix for the historical data is shown in Table 2. Unlike most other 

ARASQ test events, this event uses only a tanker A/C. For this reason, there are only 

three controls in the sample design matrix. 

Table 2 Sample Design Matrix 

 

 

 

 

 

 

 

 

 

 

Airspeed Altitutde Weight

289 24865 260749

289 25068 261126

288 24984 260157

290 24974 259701

291 24914 259885

290 25008 259487

289 24979 259042

290 25078 253532

291 25013 253324

290 24951 259238

291 25065 253780

290 25052 253632

289 25000 258810

323 24913 256064

322 24889 256244

322 24952 255851
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Using Microsoft Visual Basic for Applications, the time series control and 

response data were imported into Microsoft Excel for pre-processing. Table 3 lists the 

responses of interest in this maneuver: 

Table 3 Coded and Uncoded Variables 

 

The data was imported into Excel and organized as shown in Table 4. 

Table 4 Sample Time Slice of Data 

 

 

 

 

 

 

 

 

 

Coded Response Uncoded Response

AOA Angle of Attack

AX Corrected Longitudinal Acceleration

AY Corrected Latitudinal Acceleration

BMAZM Boom Azimuth Deflection

BMELV Boom Elevation Deflection

BMFAX Boom Longitudinal Force

PitchAttitude Pitch Attitude

PitchRate Pitch Rate

RollAttitude Roll Attitude

RollRate Roll Rate

YawRate Yaw Rate

Time Airspeed  Weight Altitude Airspeed^2  Weight^2 Altitude^2 PitchAttitudeBMAZM BMELV BMFAX AX AY PitchRate RollRate YawRate RollAttitudeAOA

0 293.113 260751 24843.4 85915.23077 67991084001 617194523.6 2.80557 0.284828 32.8105 2571.89 0.049883 0.009756 0.063188 -0.07539 0.008949 -0.84027 2.80662

0 293.355 261128 25083.6 86057.15603 68187832384 629186989 2.59923 -0.23262 32.719 2358.47 0.039966 0.006657 -0.0125 -0.1205 0.002539 -1.17071 2.46099

0 292.931 260159 24986.5 85808.57076 67682705281 624325182.3 2.49716 -0.35022 32.8105 2211.63 0.046142 0.009051 0.107813 -0.07635 0.018446 -0.38313 2.58407

0 294.489 259704 24990.6 86723.77112 67446167616 624530088.4 2.19218 -8.8646 33.2074 -4978.86 0.044114 0.001936 -0.02156 0.032389 0.056104 -0.89431 2.46577

0 295.228 259887 24898.9 87159.57198 67541252769 619955221.2 3.07291 -9.89949 33.3905 -5831.44 0.04928 0.003983 0.116312 -0.13333 -0.0167 -0.9323 2.73611

0 294.365 259490 24988.3 86650.75323 67335060100 624415136.9 2.50958 -9.38204 31.9558 -5214.45 0.04373 0.002113 0.017462 -0.16836 0.00438 -0.90725 2.51126

0 293.333 259044 24964.1 86044.24889 67103793936 623206288.8 2.99025 9.38721 30.3684 9368.31 0.049038 0.01104 -0.00545 -0.25801 0.054715 -0.44209 2.59507

0 294.196 253533 25089.4 86551.28642 64278982089 629477992.4 2.57055 11.2464 31.3122 11410.3 0.044155 0.010632 -0.31407 -0.16096 -0.16795 -1.09347 2.43049

0 295.19 253325 24987.2 87137.1361 64173555625 624360163.8 3.04893 10.776 31.0069 11120.9 0.050979 0.011967 -0.02636 -0.67569 -0.10826 -0.35008 2.59412

0 294.804 259240 24966 86909.39842 67205377600 623301156 2.04587 9.99874 31.8947 10258 0.042758 0.010672 0.183324 -0.10377 0.131199 0.760402 2.49904

0 295.275 253781 25032.9 87187.32563 64404795961 626646082.4 2.74861 10.682 30.5795 10691.8 0.045344 0.015964 0.091708 0.150444 -0.10809 -1.32362 2.50355

0 294.408 253633 25056 86676.07046 64329698689 627803136 2.32809 11.1053 31.2816 11310.9 0.051025 0.010484 0.285268 -0.17456 -0.08005 -0.15281 2.61072

0 293.075 258812 25006.1 85892.95563 66983651344 625305037.2 2.5006 10.0928 30.0631 9613.36 0.046608 0.013488 0.051153 0.177366 -0.08781 -1.88642 2.54153

0 328.099 256066 24904.9 107648.9538 65569796356 620254044 1.25289 1.01396 32.8105 2418.91 0.027489 0.004618 0.040742 0.538578 -0.00983 -1.97703 1.54163

0 327.878 256246 24910.4 107503.9829 65662012516 620528028.2 1.93973 -0.53839 33.1769 2582.99 0.026968 0.008436 -0.11595 -0.03216 0.034396 -0.72565 1.49961

0 327.829 255853 24963.4 107471.8532 65460757609 623171339.6 1.6574 -1.17344 32.0779 1977.07 0.032131 0.002033 0.038814 -0.2819 0.128999 1.03576 1.66595
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As shown in Table 4, the time slice is followed by the design matrix which is then 

followed by the matrix Y, or the matrix of responses. 

For each of the responses of interest at each time, a second-order response 

function is estimated using ordinary least squares. This function corresponds to equation 

(1). 

After grooming the data and preprocessing it, Microsoft VBA loops across each 

time slice and sends the data to MATLAB to be evaluated with the regstats command. 

Using a rather lenient standard of significance, with an alpha level of .2, we see that a 

large proportion of these equations display significance in the second order effects. 

 Using these equations, response surfaces were generated graphically for visual 

inspection. The figure below represents one of the thousands of surfaces generated for 

this maneuver. As you can see in the figure, there is severe curvature in the design space. 

Using script files in JMP or Matlab, these surfaces are generated for every response at 

each time slice for inspection.  

 

 

 

 

 

 

 

 

Figure 3 Sample Response Surface 
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After this inspection and the statistical significance of the second-order models, it 

was clear that for this maneuver there is curvature in the design space. This justifies a 3-

level experimental design for ARASQ 2.2.5.3 that will be run with the KC-46.  

4.2 Design Optimization 

The design matrix for ARASQ 2.2.5.3 can be seen in Table 5. Note that the 

design contains 19 runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using JMP to evaluate this design, Figure 4 shows the diagnostics for the ARASQ 

design. As shown, this is a D-optimal design with 19 runs. This analysis assumes that we 

are estimating both main effects and quadratic effects.  

AirspeedBoom RateBoom AzimuthBoom Extension

-1 -1 0 0

-1 0 0 0

-1 1 0 0

0 -1 0 0

0 0 0 0

0 1 0 0

1 -1 0 0

1 0 0 0

1 1 0 0

0 -1 -1 0

0 0 -1 0

0 1 -1 0

0 -1 1 0

0 0 1 0

0 1 1 0

0 -1 0 -1

0 0 0 1

0 -1 0 -1

0 0 0 1

Table 5 ARASQ Design Matrix 
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Figure 4 Design Diagnostics for ARASQ Design 

As previously discussed a recommended optimality criterion for this design is I-

optimal as we will use results to generate response surfaces for simulator validation.  

 Using the DOE tab in JMP for design optimization, we produced the design found 

in Table 6 I-Optimal Design 

 

 

 

 

 

 

 

 

 

 

 

Using JMP to judge the goodness of this design, we see that it is indeed I-optimal, 

and it actually offers an improvement in relative D-efficiency while allowing us to lower 

Airspeed Boom RateBoom AzimuthBoom Extension

0 0 0 1

1 1 0 0

-1 -1 0 0

-1 -1 0 -1

-1 0 -1 1

-1 0 1 0

1 -1 1 0

1 0 1 -1

1 -1 -1 1

0 1 0 1

0 1 -1 0

0 0 -1 0

1 0 0 -1

0 -1 1 -1

-1 1 1 1

-1 1 -1 -1

Table 6 I-Optimal Design 
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our average scaled prediction variance (SPV) using just16 runs vice the 19 shown in the 

current ARASQ design as shown in Table 5. 

 

          Figure 5 Diagnostics for I-Optimal Design 

Comparatively, the I-optimal design is a better design for its purpose, as shown in Table 

7. 

Table 7 Design Comparison 

 

This new design represents a proposed improvement to the current ARASQ test matrix. It 

offers improvement in efficiency and prediction with a decrease in the number of test 

runs. Not only is this a more efficient design, this new design will more accurately 

capture the curvature of the design space. Properly modeling this curvature is a priority 

from both the analyst’s and the program management’s perspective, and using this I-

Optimal design allows for this.  

 This new design is also leaner than the previous ARASQ design. It will be 

cheaper to test and easier to implement. However, this is merely an example analysis. 

Other forms of this deep-dive analysis are included in the appendices of this document.  

Design D-efficiency SPV Relative Efficiency Improvement Decrease in Prediction Variance

ARASQ 26.49 0.522222 56.72% 20.55%

I-optimal 41.514 0.4149 - -
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5. Simulator Validation 

 Chapter five of this thesis will demonstrate the first validation technique. Using 

this prediction interval comparison technique is a more stringent method for validating 

individual simulator runs. The data used in this validation comes from Volume III of the 

Kohlman Systems Research Inc. report on Proof of Match for the KC-135 simulator 

(Kohlman Systems Research 1998). 

5.1 SIMCERT Process 

In the United States Air Force, each Major Command (MAJCOM) has its own 

responsibility to validate its own simulators and training devices. Some MAJCOMs do a 

better job than others in terms of validation. Within AMC, the job of simulator validation 

is tasked to specific SIMCERT teams. AMC employs equipment specialists that deal with 

most of the aircraft systems testing and assist with the objective testing review.  

Historically, these personnel were “Blue-suit” Air Force personnel with a specialization 

in simulator maintenance. However, this specialty designator was eliminated. Today, 

SIMCERT teams are typically composed of one or two experienced pilots, one or two 

senior enlisted aircrew members. The pilots on SIMCERT teams are usually not flight 

test qualified pilots, and the senior enlisted testers are usually former load masters or 

boom operators (as appropriate for the weapon system). Each SIMCERT team is specific 

to a single type of aircraft or training system. There are teams for pilot training, aircrew 

training, and maintenance training; respectively, each of the certification processes are 

handled by a different SIMCERT team. 



41 

SIMCERT validation today involves subjective proof of match testing between 

simulator and flight test data. As Kohlman Systems Research originally showed proof of 

match in the late 1990s, today data is compared on a time slice by time slice basis. If the 

data from the simulator falls within a specified tolerance of the flight test data, the 

simulator is said to be in compliance with the requirements of ARASQ for that test event.  

However, these methods fail to capture the probability distribution associated 

with a response for a given test event or the conditional distribution that is associated 

with each response in a sufficiently small region of the design space. The current 

subjective methods for validation apply minimal statistical rigor providing a somewhat 

shallow framework for validation using two sets of data.  

5.2 Data Set 

 The data used in this portion of the analysis was originally generated for a proof 

of match report on the KC-135 simulator in 1998. This report is Volume III of the KC-

135 vs. KC-10, and the data for this comparison is housed in its appendices. The specific 

portion used in this validation chapter corresponds with Boom Operator Control 

Characteristics in Free Air. This is the same ARASQ test event as in Chapter four. The 

actual flight test data comes from Table 5-3 1.a.2; this test event is described in 2.2.5.3 in 

ARASQ Revision C.  

 Within the data set, Kohlman Systems Research replicated four of the test runs 

associated with the requirement outlined in Revision C of ARASQ. Unfortunately a data 

set containing only 4 test runs does not meet the data requirements for building a 

response function to compare to the one generated using Table 5-3 1.a.2. However, the 
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response function from Table 5-3 1.a.2 is used to build a prediction interval for the 

response of interest given a set of controls.  

In this case, the most interesting response is Corrected Latitudinal Acceleration 

based on statistical significance. In this analysis, the response values are compared from 

four test runs at ten matching time slices. The result is 40 individual comparisons with a 

pass/fail judgment for each observation. 

Kohlman Research Systems concluded that all four validation scenarios passed 

validation. This fact is important, and it will be touched on again in the next section.  

5.3 Validation Demonstrated 

 The ten random matching time slices of comparison for this test event are 

displayed in Table 8.Table 2 

Table 8 Matching Time Slices 

 

As this maneuver consisted of 16 runs of flight testing, each time slice contains 16 

individual data points.  

 Shown in Table 9, you can see an example from the ten time slices of data from 

flight testing.  

Time Slices

0

0.288

2.88

5.088

8.928

13.44

20.448

21.12

27.168

36.384
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 At each time slice in Table 8 a response function is generated using the historical 

flight test data using equation (1). 

 Using equation (9) to generate a 95% prediction interval, it is shown in Table 10 

that not all of the test runs passed validation according to the (1-a%) prediction interval 

criterion. Table 10 shows the data from the simulator along with the corresponding 

prediction interval for each observation. 
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Table 10 Validation Results 

 

Unlike the results as displayed by Kohlman Research Systems in Appendix A of 

Volume III, these four simulator tests do not match the reality of the GT. As shown in 

Time Slice AY Airspeed Weight Altitude Lower 95% Upper 95% Pass/Fail Validation Scenario

0 0.00741 288.256 260156 24984.6 -0.001370483 0.050136994 Pass 1

0.288 0.00744 288.269 260156 24984.5 -0.008029931 0.030789403 Pass 1

2.88 0.00932 288.398 260156 24983.4 0.000621941 0.04107653 Pass 1

5.088 0.0068 288.473 260156 24981.8 0.004361576 0.033456188 Pass 1

8.928 0.00867 288.635 260156 24979.5 -0.005587225 0.026498094 Pass 1

13.44 0.00575 288.839 260156 24977 -0.001503785 0.039923524 Pass 1

20.448 0.00877 289.482 260156 24966.2 0.002868258 0.042847398 Pass 1

21.12 0.00799 289.563 260156 24963.4 -0.002831572 0.031003467 Pass 1

27.168 0.00822 290.665 260156 24925 -0.010839915 0.034419992 Pass 1

36.384 0.00664 289.929 260156 24948.3 0.004124071 0.060017154 Pass 1

0 0.01023 288.447 260156 25001.2 -0.001138164 0.047998874 Pass 2

0.288 0.00987 288.461 260156 25000.9 -0.00747429 0.02948742 Pass 2

2.88 0.01249 288.515 260156 24999.4 0.000647544 0.03987508 Pass 2

5.088 0.01008 288.492 260156 25001.1 0.004578489 0.033254322 Pass 2

8.928 0.01146 288.227 260156 25011.6 -0.005058994 0.029059047 Pass 2

13.44 0.01152 287.72 260156 25034.6 -0.00135407 0.048467461 Pass 2

20.448 0.01437 287.568 260156 25055 0.00531668 0.052475752 Pass 2

21.12 0.01394 287.625 260156 25053.1 -0.001478108 0.037438672 Pass 2

27.168 0.01049 288.532 260156 25022.5 -0.017326684 0.044990716 Pass 2

36.384 0.01271 288.55 260156 25019.7 0.001665439 0.071794123 Pass 2

0 0.00853 322.496 260156 24883 -0.031742513 0.009705157 Pass 3

0.288 0.00837 322.457 260156 24884.7 -0.017294796 0.014774948 Pass 3

2.88 0.00984 322.202 260156 24895.7 -0.028688687 0.007445479 Fail 3

5.088 0.0078 322.181 260156 24899.4 -0.019432274 0.006557089 Fail 3

8.928 0.00835 322.514 260156 24893.8 -0.014954519 0.015026299 Pass 3

13.44 0.00901 323.137 260156 24874.4 -0.025883978 0.01190987 Pass 3

20.448 0.00887 324.259 260156 24843.9 -0.036481218 0.00818224 Fail 3

21.12 0.00875 324.356 260156 24840.3 -0.025609564 0.012266044 Pass 3

27.168 0.00493 325.103 260156 24811.6 -0.041045499 0.029939691 Pass 3

36.384 0.00882 324.525 260156 24837.6 -0.062384697 0.008931037 Pass 3

0 0.00803 322.465 260156 24951.3 -0.033326874 0.008622746 Pass 4

0.288 0.0082 322.463 260156 24951.6 -0.020930039 0.011645497 Pass 4

2.88 0.00927 322.408 260156 24955.8 -0.027977369 0.008696088 Fail 4

5.088 0.01153 322.357 260156 24960.5 -0.020961365 0.005525702 Fail 4

8.928 0.01011 322.395 260156 24964.9 -0.016619114 0.013888562 Pass 4

13.44 0.00862 322.419 260156 24966.8 -0.028396148 0.010710724 Pass 4

20.448 0.01 322.72 260156 24960.8 -0.032093176 0.007423661 Fail 4

21.12 0.00994 322.8 260156 24959 -0.023993775 0.009629407 Fail 4

27.168 0.00908 323.59 260156 24933.8 -0.036696389 0.023643141 Pass 4

36.384 0.00804 324.82 260156 24887.3 -0.060367851 0.008529733 Pass 4
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Appendix A, KSR made blanket statements that these four scenarios all passed validation 

when using a time series comparison of response parameters. However, when using a 

more detailed form of analysis, it is shown that in the 4
th

 test scenario only 60% of the 

test points can be validated using a prediction interval and in the 3
rd

 test scenario only 

70% of the test points match the ground truth at 95% confidence.  
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6. Discussion 

In this thesis, we have proposed a new methodology for flight simulator 

validation using time series responses and their response surfaces to evaluate the fit of the 

simulator model to the ground truth as recorded in flight testing while streamlining the 

approach for optimizing ARASQ test events as originally proposed by Storm using a 

simple-to-use software package. This chapter summarizes the contribution of this 

analysis to the body of knowledge, recommendations gleaned from the analysis, and 

suggested areas for future research. 

6.1 Contributions 

 The primary contribution of this work is the practical method with which it 

addresses simulator validation for the KC-46. It expands upon a previous method for 

evaluating ARASQ test events and provides a step-by-step process from start to finish. In 

this case, the “start” is analyzing the ARASQ test event. It is then followed by that test 

event, and the “finish” is the use of the data from that test event to validate the KC-46 

flight training simulator. 

The KC-46 Directorate can use these insights to potentially improve each of the 

several dozen ARASQ test designs. As shown in this work, it is possible to build a design 

matrix that has more desirable variance properties, sometimes in fewer runs, translating 

to a design that costs less and allows for a more accelerated schedule for the KC-46 flight 

test program. In today’s cost conscious culture, this is a major contribution and will be 

valuable if utilized properly. 
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These insights can also be used to ensure that the KC-46’s simulator is as accurate 

as possible. In today’s Air Force, the goal of a training simulator for an air crew is to 

ensure as many revenue bearing flights as possible. Using the proposed methodology for 

simulator validation ensures accuracy of the simulator across the entire design space and 

the operating envelope. Using a computer-generated I-optimal design, prediction variance 

is minimized, and the data from that flight test’s design matrix will produce a more 

accurate representation of the “ground truth” when compared to today’s proposed, highly 

fractionated designed experiments. The biggest takeaway from the proposed methods for 

validation is the ability to compare simulator data at any point in the design space for 

roughly any time slice. This allows a more objective and accurate form of validation.  

 This work can be applied to eliminate a portion of the engineering risk associated 

with flight testing while entertaining an approximately equal (if not more desirable) cost 

and schedule to what is currently proposed. This work is a prime example of the use of 

designed experiments in the defense community and applies rigor and objectivity in a 

statistical sense in test and evaluation for a major United States Air Force acquisition.  

 That being said, the fruits of this labor are applicable to programs outside of the 

KC-46 directorate. The United States Air Force employs simulators for many air frames 

in its inventory. Changing a handful of assumptions, these methods can be applied to not 

only current assets in this inventory but also to future A/C acquisitions.  

6.2 Recommendations 

 We recommend using this template for analysis for each and every ARASQ test 

event. This would increase the probability of meeting the proposed schedule and budget 

for flight testing for the KC-46.  
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 Within the analysis moving forward, a computer-generated I-optimal design 

should be used for these flight test events. This ensures that the data captured during 

flight testing will more accurately portray the underlying truth when displayed as a 

response surface.  

 We also recommend using a surface-to-surface comparison for proof-of-match 

simulator validation if possible. Intuitively, we think that it is a more robust method than 

the point-by-point comparison even though the point-by-point comparison uses statistical 

rigor to make objective inferences.  

 The final recommendation is to use the current MATLAB tool for a side-by-side 

visual comparison of both the simulator response surfaces and the ARASQ flight test 

response surfaces at every stage of the validation process. Even though the methods 

proposed for validation are statistically sound, it is likely that there will arise an instance 

where the experienced opinion of a subject matter expert should trump the statistical 

insight of an analyst who has no background in flight test or computational fluid 

dynamics. 

6.3 Suggestions for Future Research 

 The first suggestion for future research would be directly applying the methods 

for validation to other programs around the Air Force. This could be beneficial and 

provide a better goodness of fit for the simulator models used in the Air Force. 

 A second and more realistic suggestion is to apply the discussed computer-

generated design optimization techniques to the ARASQ test events in order to obtain a 

phased approach to flight testing for the KC-46. However, if a sequentially planned 

scheme is the end goal for flight testing, Bayesian D-optimal designs should be used for 
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the first phase. This will help capture the behavior of the responses at the boundaries of 

the design space. This will hopefully help ensure that the extreme points within our 

design space are captured initially. In the second phase of flight testing, these D-optimal 

designs should be augmented with runs concentrated in the center of the design space. 

This will help capture curvature, twisting, and interaction effects of the design space. 

This data will then be supplemented with the data previously collected to build response 

surfaces for simulator validation according the methods set forth in this document.  
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Appendix A: Table 5-3, 1.a.5 

 

This appendix details the deep-dive analysis of Table 5-3, 1.a.5 using flight test 

data with the KC-135 as a Tanker A/C and the KC-10 as the receiver A/C. This part of 

the flight testing corresponds to 2.2.5.6 of revision C of the ARASQ document. The title 

of this test is Boom Operator Control – Elevation. This test was undertaken in disturbed 

air with the A/C in their respective pre-contact positions.  

 The design matrix from flight testing is shown in Table 11.  

Table 11 Flight Test Design Matrix 

 

KC-135R KC-10A KC-135R KC-10A KC-135R KC-10A

290 289 25050 24920 260954 414154

290 288 25056 24915 234135 476735

291 290 25024 24912 261238 414644

290 289 25031 24898 240668 391897

290 288 25044 24915 260647 413628

290 289 25051 24922 233588 475539

290 289 25046 24915 260243 412932

290 289 25065 24916 233432 475199

289 288 25054 24935 260470 413322

290 289 25037 24917 259917 412372

289 287 25053 24919 233125 474528

290 289 25026 24892 259517 411756

289 288 25055 24915 232542 473367

291 290 25044 24911 259739 412094

289 289 25048 24919 232771 473794

290 289 25036 24909 258964 410913

287 286 25067 24920 232193 472718

317 317 24907 24836 242930 386659

326 326 24953 24873 222304 453711

318 318 24906 24834 243128 386938

326 326 24968 24876 222907 454599

317 317 24914 24838 241810 384690

325 325 24973 24867 222008 453276

Weight:Altitude:Airspeed:
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The response of interest for this maneuver are displayed in Table 12. 

Table 12 Variable Descriptions 

 

This maneuver contained 359 time slices of useable data for analysis.  

Table 13 provides an example time slice of the data for time t=0. Each time slice 

contains the same type of data. Using this data, we generate response functions according 

to equation (2).  

A design that initially proposes 3 factor levels for any of the controls assumes 

nonlinearity in the design space. To make an informed recommendation on the future 

uses of the ARASQ test matrix 2.2.5.6, the curvature of similar design spaces can be 

leveraged to apply statistical knowledge of a flight test matrix to a future test event. This 

technique is typically used in developing Bayesian Optimal Designs. 

 Using a very lenient standard for statistical significance with an alpha level α=.20, 

it is clear across the entire design space that there is curvature in the surfaces using the 

second order response surface model. This provides justification for the use of a 3-level 

experimental design. 

Coded Response Uncoded Response

AOA Reciver Angle of Attack

AX Corrected Longitudinal Acceleration

AY Corrected Latitudinal Acceleration

BMAZM Boom Azimuth Deflection

BMELV Boom Elevation Deflection

BMFAX Boom Longitudinal Force

PitchAttitude Pitch Attitude

PitchRate Pitch Rate

RollAttitude Roll Attitude

RollRate Roll Rate

T_AOA Tanker Angle of Attack

YawRate Yaw Rate
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Table 13 Example Time Slice 
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 Table 14 shows an illustration from a sample set a time slices of the curvature of 

the response surface models for Pitch Rate as analyzed in the initial flight testing. Note 

that the starred p-values are significant at the 20% alpha level. 

Table 14 P-Values for Quadratic Effects 

 

As this type of distribution of significance is seen across the entire design space for each 

response, there is significant justification for a three level design for this maneuver. This 

technique was performed for each of the 12 responses at each of the 359 time slices. 

The significance of these quadratic regression coefficients using historical data 

from similar flight control surfaces and tests provides the analyst insight for related flight 

testing on similar airframes in the future. This flight testing was done with the KC-135 as 

a tanker A/C and the KC-10 as the receiver. According to subject matter expertise, the 

curvature in the design space for this maneuver is assumed to exist in the design space of 

the next generation tanker of the USAF the KC-46. 

The KC-46, like its older counterparts, will undergo flight testing in order to 

capture ARASQ test events for simulator validation for different A/C pairings. The 

Time Slice TW^2 RW^2 Airspeed^2Altitude^2

24.288 .151* 0.202 0.526 0.439

24.384 .122* .156* 0.482 0.274

24.48 .110* .131* 0.506 .137*

24.576 .087* .082* 0.348 .037*

24.672 .085* .052* .176* .006*

24.768 .097* .039* .106* .001*

24.864 .196* .055* .080* .001*

24.96 0.393 .108* .076* .001*

25.056 0.618 0.246 .155* .005*

25.152 0.661 0.314 0.285 .013*

P-Values
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ARASQ document specifically prescribes the test events. According to ARASQ 2.2.5.6, 

the coded design matrix is shown in Table 15. 

 

 

 
 

As shown in the table, this design contains 15 runs and three levels for each factor. 

This ARASQ 2.2.5.6 design was evaluated using JMP version 10.0 (JMP, 2012).  

 

Figure 6 ARASQ 2.2.5.6 Design Evaluation 

As shown in Figure 6, the design itself is D-optimal with an average variance of 

prediction of .367. This D-optimal design minimizes the variance of the parameter 

estimates in the response surface generation.  

Receiver Boom Azimuth Limit

-1 -1 0

-1 0 0

-1 1 0

0 -1 0

0 0 0

0 1 0

1 -1 0

1 0 0

1 1 0

0 -1 -1

0 0 -1

0 1 -1

0 -1 1

0 0 1

0 1 1

Table 15 ARASQ Design 2.2.5.6 



55 

However, as the data collected from these tests is used for simulator validation, 

according to this methodology, the design in question should use I-optimality as response 

surfaces are being generated for simulator validation. Note that these efficiencies come 

from a design that is forced to estimate both main effects and quadratic effects. 

 Using JMP to optimize this design with I-Optimality as the design generation 

criterion yields the design as shown in Table 16 Proposed I-Optimal Design for ARASQ 

2.2.5.6 

Table 16 Proposed I-Optimal Design for ARASQ 2.2.5.6 

 

Using JMP to evaluate this design, we see that it is I-optimal with an average variance of 

prediction of .339 according to Figure 7.  

As you can see, the optimized design provides a relative improvement in 

prediction variance as well as D efficiency while providing an I-optimal design. This 

improvement is quantified in  

Receiver Boom Azimuth Limit

0 0 1

1 0 0

-1 0 0

0 0 -1

0 1 -1

1 0 -1

1 1 1

0 -1 1

-1 0 1

-1 1 0

0 -1 0

-1 1 1

-1 -1 -1

0 1 0

1 -1 1
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Figure 7 Design Diagnostics for I-Optimal Design 

Table 17 Design Comparison

 

This new design can be sent forward as a proposed improvement to the current 

ARASQ test matrix. It offers improvement in efficiency and prediction without an 

increase in the number of test runs. Not only is this a more efficient design, this new 

design will more accurately capture the curvature of the design space. This curvature, 

according SME opinion, is the biggest source of engineering risk in all of flight testing. 

As previously discussed, properly modeling this curvature is a priority from both the 

analyst’s and the program management’s perspective. 

Design Criterion D Efficiency Prediction Variance

Original D-Optimal 35.833 0.367407 - -

Optimized I-Optimal 42.702 0.338889 19.17% 7.76%

Relative Improvement of 

D Efficiency

Relative Improvement of 

Prediction Variance
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Appendix B: Table 2-3, 1.a.3.5 

This appendix details the design optimization analysis of Table 2-3, 1.a.3.5 using 

flight test data with the KC-135 as a Tanker A/C and the KC-10 as the receiver A/C. This 

part of the flight testing corresponds to 2.2.1.1 of revision C of the ARASQ document. 

The title of this test is Test Initialization Point. It is part of the Aerial Refueling portion of 

ARASQ. The design matrix for 2.2.1.1 from ARASQ is shown in Table 18. This design 

contains 36 runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control State Tanker Receiver

-1 1 -1

-1 1 -0.75

-1 1 -0.5

-1 1 -0.25

-1 1 0

-1 1 0.25

-1 1 0.75

-1 1 1

-1 -1 -1

-1 -1 -0.75

-1 -1 -0.5

-1 -1 -0.25

-1 -1 0

-1 -1 0.25

-1 -1 0.75

-1 -1 1

1 1 -1

1 1 -0.75

1 1 -0.5

1 1 -0.25

1 1 0

1 1 0.25

1 1 0.75

1 1 1

1 -1 -1

1 -1 -0.75

1 -1 -0.5

1 -1 -0.25

1 -1 0

1 -1 0.25

1 -1 0.75

1 -1 1

Table 18 ARASQ Design 
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In the typical fashion, using JMP to evaluate this design we see the design 

evaluation shown in Figure 8. 

 

Figure 8 Design Diagnostics for ARASQ 2.2.1.1 

Using I-Optimality criterion for design generation, JMP was used to generate the 

design in Table 19 Proposed I-Optimal Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control State Tanker Receiver

-1 -1 -1

-1 1 -1

-1 1 1

1 1 1

1 1 -1

1 -1 1

1 -1 -1

1 -1 -1

-1 -1 1

1 -1 -1

1 1 -1

-1 -1 -1

-1 -1 -1

-1 1 -1

-1 -1 1

-1 -1 -1

1 1 1

-1 1 1

1 -1 1

1 -1 1

1 1 -1

-1 1 1

1 -1 1

-1 -1 1

-1 1 1

1 1 -1

-1 1 -1

1 1 1

Table 19 Proposed I-Optimal Design 
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Using JMP to evaluate this new design, we see an improvement in prediction 

variance as well as D-efficiency in fewer runs. This is shown in Figure 9. 

 

Figure 9 Design Diagnostics for Proposed I-Optimal Design 

This design is an all around better choice for this portion of ARASQ. With over 

20% fewer runs and better variance properties, it is an improvement over the current 

design.  

As shown in Table 20 Relative Design Improvement, this design clearly is an 

improvement over the current ARASQ design. 

Table 20 Relative Design Improvement 

 

 

Design Criterion D Efficiency Prediction Variance

Original D-Optimal 81.14668 0.076389 - -

Optimized I-Optimal 100 0.071429 23.23% 6.49%

Relative Improvement of 

D Efficiency

Relative Improvement of 

Prediction Variance
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Appendix C: Table 5-3, 1.a.8 

This appendix will detail the deep-dive analysis of Table 5-3, 1.a.8 using flight 

data with the KC-135 as a Tanker A/C and the KC-10 as the receiver A/C. This part of 

the flight testing corresponds to 2.2.5.9 of revision C of the ARASQ document. The title 

of this test is Boom Operator Control – Elevation (Contact). This test was undertaken in 

disturbed air with the A/C in their respective contact positions.  

Below in Table 21 is the design matrix for flight testing. 

Table 21 Flight Testing Design 

 

KC-135R KC-10A KC-135R KC-10A KC-135R KC-10A

290 289 25042 24928 254833 403005

293 292 25010 24905 255045 403438

289 288 25041 24925 239361 389615

290 289 25046 24919 254585 402607

291 289 25027 24904 254155 402029

290 289 25064 24958 254355 402297

287 286 25045 24928 253883 401662

291 290 25042 24935 253483 401125

289 288 25068 24938 230044 467744

287 286 25036 24930 253687 401399

291 290 25043 24919 230208 468324

291 290 25047 24947 253185 400723

290 289 25047 24920 229616 466216

290 289 25044 24952 267592 354007

320 320 24876 24819 239064 380578

325 325 24972 24914 225052 457349

319 318 24931 24870 239810 381065

325 325 24982 24910 225768 458241

325 325 24955 24876 225275 457627

319 319 24886 24824 237928 379654

Airspeed: Altitude: Weight:
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Using Microsoft Visual Basic for Applications, the time series control and 

response data was imported into Microsoft Excel for pre-processing. Using VBA, the 

data was organized in the standard manner. With our prescribed methodology, regression 

models were generated according to equation (2). These regression models are second 

order response functions, capturing the curvature within the design space. Using these 

equations, response surfaces were generated graphically for visual inspection. This figure 

looks similar to hundreds of other surfaces for this maneuver. 

 

 

 

 

 

 

 

 

 

A design that initially proposes 3 factor levels for any of the controls assumes 

nonlinearity in the design space. To make an informed recommendation on the future 

uses of the ARASQ test matrix 2.2.5.9, the curvature of similar design spaces can be 

leveraged to apply statistical knowledge of a flight test matrix to a future test event.  

 Using a very lenient standard for statistical significance with an alpha 

level α=.20, it is clear across the entire design space that there is curvature in the surfaces 

using the second order response surface model. 

Figure 10 Example Response Surface 
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 To provide an example, the  shows an illustration from a sample set a time slices 

of the curvature of the response surface models for Pitch Rate as analyzed in the initial 

flight testing. Note that the starred p-values are significant at the 20% alpha level. 

Table 22 Example P-Values 

 

After graphically inspecting some of the response surfaces and these P-values, it is clear 

that a three-level design is reasonable, perhaps even justified. This distribution of 

significance is seen across the design space for each of the various responses.  

The KC-46, like its older counterparts, will undergo flight testing in order to 

capture ARASQ test events for simulator validation for different A/C pairings. The 

ARASQ document specifically prescribes the test events. According to ARASQ 2.2.5.9, 

the coded design matrix from ARASQ will be a highly fractionated 3-level design in ten 

runs. This design is shown in Table 23.  

This ARASQ 2.2.5.9 design was evaluated using JMP version 10.0 (JMP, 2012). 

The results are shown in Figure 11. 

Time t TW^2 RW^2 AS^2 Alt^2

2.16 0.019* 0.035* 0.112* 0.026*

2.208 0.014* 0.026* 0.087* 0.029*

2.256 0.008* 0.016* 0.068* 0.029*

2.304 0.009* 0.018* 0.101* 0.029*

2.352 0.009* 0.018* 0.083* 0.021*

2.4 0.003* 0.006* 0.043* 0.010*

2.448 0.003* 0.007* 0.050* 0.017*

2.496 0.002* 0.005* 0.039* 0.010*

2.544 0.002* 0.004* 0.028* 0.012*

2.592 0.001* 0.004* 0.033* 0.011*
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Figure 11 Design Evaluation for ARASQ 2.2.5.9 

Table 23 ARASQ 2.2.5.9 

 

As shown in Figure 11, the design itself is D-optimal with an average variance of 

prediction of .29375. This D-optimal design minimizes the variance of the parameter 

estimates in the response surface generation. However, as the data collected from these 

tests is used for simulator validation, according to this methodology, the design in 

question should require I-optimality as response surfaces are being generated for 

simulator validation. Note that these efficiencies come from a design that is forced to 

estimate both main effects and quadratic effects. 

 In this ARASQ test event, a decrease in prediction variance is not seen with the 

use of a computer-generated I-optimal design. These results are shown in Figure 12.  For 

this reason, the current ARASQ test design is sufficient for generating response surfaces 

Receiver Boom Operator Azimuth Limit

-1 -1 0

-1 0 0

0 -1 0

0 0 0

1 -1 0

1 0 0

-1 -1 -1

-1 0 -1

-1 -1 1

-1 0 1
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in the future which will work nicely with the simulator validation methodology 

prescribed in this work. 

 

Figure 12 Design Diagnostics for Computer-generated I-Optimal Design 

 Obviously when comparing the previous Figure 12 to Figure 11 it is clear that the 

average prediction variance for the ARASQ design is less than the I-Optimal design. The 

impact of these results is actually still significant. These results show that the current 

ARASQ design is statistically strong and should remain as a part of the ARASQ testing 

regiment.  
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Appendix D: Table 2-3, 1.a.4 

This appendix details the design optimization analysis of Table 2-3, 1.a.4 using 

flight test data with the KC-135 as a Tanker A/C and the KC-10 as the receiver A/C. This 

part of the flight testing corresponds to 2.2.1.6 of revision C of the ARASQ document. 

The title of this test is Acceleration/Deceleration Effects (Pre-Contact). It is part of the 

Aerial Refueling portion of ARASQ. The design matrix for 2.2.1.6 from ARASQ is 

shown in Table 24. 

Table 24 ARASQ 2.2.1.6 

 

Closure Rate Tanker Receiver

-1 -1 -1

-1 -1 -0.66

-1 -1 -0.33

-1 -1 0

-1 -1 0.33

-1 -1 0.77

-1 -1 1

-1 1 -1

-1 1 -0.66

-1 1 -0.33

-1 1 0

-1 1 0.33

-1 1 0.77

-1 1 1

1 -1 -1

1 -1 -0.66

1 -1 -0.33

1 -1 0

1 -1 0.33

1 -1 0.77

1 -1 1

1 1 -1

1 1 -0.66

1 1 -0.33

1 1 0

1 1 0.33

1 1 0.77

1 1 1
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Using JMP in the typical fashion, the diagnostics for this design are shown in 

Figure 13 Design Diagnostics for ARASQ 2.2.1.6  

 

Figure 13 Design Diagnostics for ARASQ 2.2.1.6 

 

 This design originally contains 28 runs. However, using the I-optimality criterion 

we cut the number of runs from 28 to 24 and produce a design with preferable variance 

properties. This design can be seen in Table 26  Optimized ARASQ 2.2.1.6 and the 

diagnostics for this design are shown in Figure 14 Design Diagnostics for Optimized 

2.2.1.6  

 

Figure 14 Design Diagnostics for Optimized 2.2.1.6 

 

This new design is a statistically preferred design. As shown in a comparison 

between Figures 13 and 14, the new design provides more D efficiency and improved 

prediction variance in roughly 15% fewer runs. This comparison can be seen on page 67 

in Table 25. 



67 

Table 25 Design Comparison 

 

Table 26  Optimized ARASQ 2.2.1.6 

 

As shown with the comparisons, this design as shown in Table 26 is to be pushed 

forward as an alternate ARASQ design to be used in the testing of the KC-46.  

21.20% 14.29%

Relative Improvement of 

D Efficiency 

Reduction in 

Runs

Tanker Closure Rate Receiver

1 1 1

1 1 -1

-1 1 1

1 -1 -1

-1 1 1

1 1 1

-1 -1 -1

-1 1 -1

-1 1 -1

1 -1 1

1 -1 1

-1 -1 1

1 1 -1

-1 1 -1

-1 -1 -1

1 1 -1

-1 1 1

1 -1 -1

1 -1 -1

-1 -1 1

1 1 1

-1 -1 -1

1 -1 1

-1 -1 1
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Appendix E: Quad-Chart 
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